Robust Video Registration Applied to Field-Sports Video Analysis

Published in ICASSP 2012.


Multiple player tracking is one of the main building blocks needed in a sports video analysis system. In an uncalibrated camera setting, robust mutli-object tracking can be very difficult due to a number of reasons including the presence of noise, occlusion, fast camera motion, low-resolution image capture, varying viewpoints and illumination changes. To address the problem of multi-object tracking in sports videos, we go beyond the video frame domain and make use of information in a homography transform domain that is denoted the homography field domain. We propose a novel particle filter based tracking algorithm that uses both object appearance information (e.g. color and shape) in the image domain and cross-domain contextual information in the field domain to improve object tracking. In the field domain, the effect of fast
camera motion is significantly alleviated since the underlying homography transform from each frame to the field domain can be accurately estimated. We use contextual trajectory information (intra-trajectory and inter-trajectory context) to further improve the prediction of object  states within an particle filter framework. Here, intra-trajectory contextual information is based on history tracking results in the field domain, while inter-trajectory contextual information is extracted from a compiled trajectory dataset based on tracks computed from videos depicting the same sport. Experimental results on real world sports data show that our system is able to effectively and robustly track a variable number of targets regardless of background clutter, camera motion and frequent mutual occlusion between targets.

Zhang Tianzhu
Bernard Ghanem
Narendra Ahuja

paper (pdf)
poster (ppt)

Source code:


This study is supported by the research grant for the Human Sixth Sense Programme at the Advanced Digital Sciences Center from Singapore’s Agency for Science, Technology and Research (A*STAR).